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Received 18 August 1987 

Abstract. The scattering of a soliton from a mass impurity in a Morse or Toda one- 
dimensional lattice with periodic boundary conditions is studied numerically. The energy 
of the soliton as a function of time exhibits either a fast decay (chaotic behaviour) or a 
recurrence, or an intermediate ‘metastable’ behaviour, which consists of a time period 
when recurrence takes place, followed by a fast decay. A model is developed to explain 
the recurrence and predict the recurrence time. A semiquantitative argument is also 
presented to explain the ‘metastable’ case. Finally the generality of this type of behaviour 
is discussed. 

1. Introduction 

The study of non-linear lattice dynamics (Jackson 1978) was initiated by the numerical 
experiment of Fermi, Pasta and Ulam (FPU) (Fermi et a1 1955) on one-dimensional 
lattices with polynomial interaction. Their work was motivated by Fermi’s ideas about 
the relationship between non-linearity and irreversibility. Several attempts to explain 
the FPU recurrence ‘paradox’ were the origin of important new ideas. One of them 
was the discovery of solitons by Zabusky and Kruskal (1965) as a solution of the 
integrable K d v  equation, which is the continuous limit of the FPU lattice. Among the 
many lattices studied (Toda 1975, Northcote and Potts 1964), the Toda lattice proved 
to be integrable (HCnon 1974, Flaschka 1974), even in the discrete case, and to accept 
soliton solutions. The Toda lattice became the subject of extensive studies (Holian el 
a1 1981, Ferguson et a1 1982). 

Even though in a physical system there are always perturbations that tend to destroy 
the regular motion, the soliton concept is still useful because of the fundamental 
Kolmogorov-Arnold-Moser theorem (Arnold 1963). Briefly the main point of this 
theorem is that, when a Hamiltonian of an integrable system is slightly perturbed, the 
majority of the tori on which the trajectories of the integrable system lie are not 
destroyed but are only deformed. Hence the perturbed system will exhibit qualitatively 
the same behaviour with the corresponding integrable system. This consideration 
indicates that the scattering of a soliton by an impurity in a one-dimensional lattice, 
which accepts soliton solutions, does not necessarily imply the decay of the soliton. 
Notice that the theorem does not specify how weak the perturbation should be. 

The work presented here has been particularly motivated by interesting computa- 
tional results published by Rolfe and Rice (1980) without an interpretation of the 
mechanisms involved. They studied the decay of a soliton travelling in a one- 
dimensional chain of Morse oscillators where an impurity of slightly heavier mass was 
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introduced (figure 1). They found, that this system ‘displays several unusual features 
which are unexpected from the point of view of the perturbation theory of solitary 
wave scattering’. More specifically they produced a large number of diagrams present- 
ing the rate at which the soliton loses its energy for different values of its initial energy, 
of the impurity mass, or of the lattice length (number of particles). The results showed 
the following three types of dynamical behaviour. 

(i)  The soliton decays and its energy decreases fast. 
(ii) The soliton never (for the time length of the computations) decays and its 

energy oscillates back to its original value. This recurrence of the energy of the soliton 
recalls the well known FPU recurrence (Fermi et a1 1955). Indeed there are similarities 
between these results and the FPU recurrence. In both cases we study systems which 
can be treated as perturbations of an integrable system. Actually for the FPU case 
perturbation methods were developed (Ford 1961, Jackson 1963), where the recurrence 
was interpreted as a ‘resonance’ between the non-linear normal modes. Similarly we 
will develop here a resonance mechanism, which predicts the recurrence time of the 
Rolfe-Rice system in the case when the soliton does not decay. 

(iii) The soliton decays after a very long time. In other words, its energy oscillates 
back to its original value but the energy of the soliton decreases rapidly after this 
recurrence has been repeated several times. 

The Morse lattice without defects can sustain soliton-like excitations but their 
collisions can be slightly inelastic. To avoid this extra complication we also studied 
the Toda lattice which is known to be completely integrable for the pure chain. For 
the Toda lattice with one impurity and periodic boundary conditions the same results 
were obtained as for the Morse lattice. Therefore this behaviour may be general for 
systems which are small perturbations of integrable systems. We will attempt to explain 
these results. 

This paper is organised as follows. In § 2 ,  we describe in detail our numerical 
experiments. In § 3, a model is presented which successfully describes the dynamics 
of the system for the cases (ii) and (iii) for the time period when the soliton does not 

n 

Figure 1. A picture of the system; an atomic ring with one impurity. 



Recurrence phenomena in soliton propagation 1255 

decay. By this method a prediction of the recurrence time of the energy of the soliton 
is made. The same model can be used to predict those values of the parameters of 
the system for which the decay of the soliton (case (i))  takes place. Finally in 0 4 case 
(iii) is discussed and an argument is presented which justifies the metastable behaviour 
of the soliton in this case. 

2. Numerical results 

The first aim of our numerical calculations is to verify the results of Rolfe and Rice 
(1980). We also completed their numerical work by studying the dependance of their 
results on the mass of the impurity. The system they studied was a one-dimensional 
lattice of particles which interact only with their nearest neighbours with a Morse 
interaction: 

( 1 )  V( r )  = $A(e-br - 1 ) 2 .  
All particles have the same mass, which is taken to be unity, except one which has a 
different mass m. Periodic boundary conditions were considered. The parameters A 
and b were chosen equal to 16 and 0.25 respectively, such that the spring constant of 
the linear lattice is equal to unity. This choice does not influence the generality of our 
results. 

It is known that the Morse lattice has an almost soliton solution, which is used as 
the initial condition in our numerical experiments. This initial condition is constructed 
by using a combination of analytical and numerical techniques. It is known that the 
continuum limit for the Morse lattice gives a Boussinesq-type equation (Flytzanis et 
al 1985) which can be solved. Therefore, using a continuum approximation one can 
find small-amplitude soliton solutions for the Morse lattice. It has also been proved 
numerically that even large-amplitude soliton-type solutions exist in the discrete Morse 
lattice. These are constructed numerically by letting an approximate soliton solution 
produced by solving the corresponding Boussinesq equation to propagate in a long 
discrete Morse lattice (Peyrard et a1 1986). The amplitude-velocity relation in the 
large amplitude case is very different from the continuum result. 

The energy of the soliton E, is defined as the energy of n particles left and right 
of the particle with the highest velocity, where n is chosen large enough that E ,  becomes 
independent of n. The energy of the soliton is determined after every collision of the 
soliton with the impurity at three different positions. The average of these three values 
is taken as the energy of the soliton, such that a possible abnormal contribution of the 
energy of the background motion to the energy of the soliton is avoided. 

Figure 2 shows some typical numerical results of the energy of the soliton as a 
function of the number of the collisions for three different impurity masses, qmp, 
while keeping constant the other parameters of the system, namely the energy of the 
soliton, E,, and the length of the lattice, N. We conducted similar computations for 
several other combinations of these three parameters. Our results depend critically on 
the previous parameters, interchanging from regular to chaotic behaviour in agreement 
with the numerical results of Rolfe and Rice (1980). As explained earlier, the Morse 
lattice in the absence of impurities can sustain stable solitary waves. The lack of 
complete integrability, however, is reflected in the collision between narrow kinks, 
which is quasielastic (Flytzanis et a1 1987). To avoid this effect and to check the 
generality of the coherent phenomena observed, we also studied the Toda lattice, which 
accepts soliton solutions. 
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Figure 2. Graphs of the soliton energy E ,  as a function of the number of collisions nc of 
the soliton with the impurity for the Morse lattice. E ,  = 3.014 and N = 40 for all three 
cases presented. The impurity mass is ( a )  1.40, ( b )  1.05 and (c )  1.15. 
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Figure 3. Graphs of the soliton energy E, as a function of the number of collisions nc of 
the soliton with the impurity for the Toda lattice. E ,  = 4.409 and N = 40 for all three cases 
presented. The impurity mass is ( a )  0.5, ( b )  0.6 and ( c )  0.5075. 
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The scattering of a soliton in a Toda lattice from an impurity, has been studied 
(Yoshida and Sakuma 1987, Nakamura 1978, Klinker and Lauterborn 1983) by inverse 
scattering techniques. Geist and Lauterborn (1986) studied the decay of a soliton when 
it is scattered by an impurity in a Toda lattice with periodic boundary conditions, but 
for a range of parameters where the soliton decays after a few collisions. In  all these 
cases, no coherent behaviour was observed as studied by Rolfe and Rice (1980). In 
the Toda case the interaction between the first neighbours is of the type 

C C 
V(r)=-ee-dr+Cr-- .  

d d 

In our computations C = and d = i. The initial conditions were constructed to satisfy 
the soliton solution of the Toda lattice, which can be solved analytically even in the 
discrete case. 

Figure 3 shows typical results of the numerical calculations of the energy of the 
soliton for the Toda lattice. The soliton energy was computed in the same fashion as 
in the Morse lattice. The energy of the soliton as a function of time was calculated 
also for several other combinations of the impurity mass, the soliton energy and the 
lattice length. These results show that the behaviour observed in the Morse lattice also 
appears in the Toda lattice. 

The qualitative characteristics of the dynamical behaviour of the impurity system 
can be summarised and distinguished in the following three cases which were also 
briefly presented in the introduction. 

( i )  Figures 2(a )  and 3(a )  present two typical examples of a fast decaying soliton 
in a Morse or Toda lattice respectively. The decay of the soliton takes place in an 
irregular way. Any regular characteristics cannot be recognised in the function E,( t ) .  

(i i)  In this case, contrary to case (i), the energy of the soliton behaves as a periodic 
function of time without decaying. In other words E , ( ? )  can be presented as a 
superposition of trigonometric functions. Figures 2( b )  and 3( b )  correspond to Morse 
and Toda lattices, respectively, and are two typical examples of this case. The periodic 
behaviour of function E,( t )  shown in figure 3( b )  is demonstrated better in figure 4, 
where its power spectrum is presented. This power spectrum mainly consists of two 
discrete peaks; therefore it is a spectrum of a periodic function. 

0 000 

A 

R 

0 02 0 03 
W 

Figure 4. Power spectrum of the soliton energy for a Toda lattice where E ,  = 4.409, N = 40 
and m,,,=0.6. The two large peaks are at 0, =0.010 and 0, =0.012. 
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(iii) The third case shown in figures 2(c) and 3(c) corresponds to an intermediate 
situation between cases ( i )  and ( i i ) .  The function E , ( r )  behaves periodically with time 
for a long period of time, after which it exhibits a fast decay. It  is also possible that 
this decay brings the energy of the soliton to a new plateau where the motion is periodic 
until a new decay occurs. 

Several examples of all these three cases for the Morse lattice can be found in the 
paper of Rolfe and Rice (1980), where the question of the numerical accuracy was 
also examined. In our calculations, we have used a fourth-order Runge-Kutta numeri- 
cal scheme to integrate the equations of motion. The error in conservation of the 
lattice energy was used as a test of the accuracy of the numerical results. We used an 
integration step such that this error was smaller than 

3. A model explaining the recurrence in the energy of the soliton 

In this section we will explain the appearance of a recurrence in the energy of the 
soliton which was observed in case (ii)  of the last section. The numerical results show 
that in this case the soliton retains a large percentage of its energy such that the 
following two assumptions are true. 

(a) The shape of the soliton does not change drastically due to scattering. Hence 
this slightly deformed soliton rapidly readapts to a new solution of the pure lattice. 
Therefore the soliton loses energy mainly at the impurity. Furthermore its velocity is 
almost constant. 

(b) The energy which is transferred into the lattice, because of the collisions of 
the soliton with the impurity, is small so the harmonic approximation can successfully 
describe the background motion. 

If this second assumption is correct the coupling between the normal modes, because 
of the non-linearity, can be neglected. Hence the dynamics of the system can be 
reduced to the motion of a single effective harmonic oscillator, which moves under 
the influence of a periodic square pulse F ( t )  with period T and amplitude a, and 
pulse duration T (figure 5). This external force represents the periodic kicks of the 
impurity by the soliton. The motion of this system can be studied analytically. The 
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Figure 5. Description of the external force F (  t )  
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equation of motion of the system is 

x = - w : x +  I=( 1 )  (3 )  

where wo is the frequency of the effective oscillator. The general solution of (3) is 
-1c 

x ( t )  = C cos ( w o t ) + D  sin(wot)+Ao+ 1 [ (A,,  cos(nwt)+ B,, sin(nwt)] (4) 
, , = I  

where w = 2 n / T  and  

A. = a r /  To; 

A,, = U  sin(nwT)/nTw(wi-n2w2) ( 5 )  

B, = -a cos(nwr)/nTw(wi- n’w’). 

Because of the form of A,, and  B,, we can keep only the terms A, and B, for which 
now = wo. Therefore now/wo = 1 and (now - wo)  = 0. Notice that (now - wo)  f is not 
necessarily small because t can be large. The choice of initial conditions for the 
effective oscillator can change the results only up  to a phase and for simplicity we 
choose x(0) = 0 and x(0) = 0: 

sin[;( now - w o ) t ]  cos(wot+ n o m ) .  
2A, 

sin( n o w )  
x ( t )  = - 

Then it is easy to show that the energy which has been transferred 
oscillator is 

[ 1 - cos( now - w o )  t]. 
a 

E (  t )  = ;(x2+ W t X 2 )  = (T(wi -n :w2)  

(6) 

to the effective 

(7) 

As a consequence, in the case of a harmonic lattice interacting with a square pulse, 
the ith normal mode will be excited, if (nfw; - w f )  is small, wi is the eigenfrequency 
of the ith mode, and U ,  = 2 m , /  N, where U, is the velocity of the soliton and N is the 
number of the particles in the lattice. Hence the time dependence of the energy of the 
soliton is of the form 

where E,(O) is the initial soliton energy. 
Therefore we expect to find the frequencies (n,w, - w , )  in the spectrum of the energy. 

Hence, if the soliton is approximated by a square pulse, its energy exhibits a recurrence 
such that the recurrence times are the periods corresponding to these frequencies. 

To test this idea we will find the eigenfrequencies w ,  of the lattice using a perturbation 
method. The frequency w,  corresponding to the time between two successive collisions 
of the soliton with the impurity is determined numerically. Therefore the (n,w, - 0,) 

can be determined and the modes which will be excited most can be predicted. The 
results of this model can be compared with the numerically produced spectrum of the 
velocity of a particle in the lattice. A second check is to find the smallest ( n p ,  - w , )  
to be the frequencies in the spectrum of the energy of the soliton. 

The perturbation method used to find the w ,  is as follows. The displacement q1 of 
the ith particle can be considered the sum of the displacement because of the soliton 
s, and the displacement because of the background motion U,: 

( 9 )  q, = s, + U,. 
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We suppose that U, is small. Hence the equations of motion 

m,q, = F(q ,+ ,  - 4 , )  - F(Sl - 41-1) (10) 

can be linearised with respect to U,. These linearised equations of motion for U, are 

can be determined from the initial form of the solution. Therefore a set of eigenfrequen- 
cies and their corresponding eigenvectors can be determined. Notice that we considered 
a soliton sufficiently wide that its position in the lattice does not much influence these 
eigenvalues. The values of these frequencies can be compared to the values found in 
the numerically produced spectrum of the velocity of a particle in the lattice. We 
found only a fair agreement between these two values. For this reason another technique 
was used to improve the value of the eigenfrequencies. 

This improvement takes into account also the non-linearity of the equations of 
motion, in the following way. Using the matrix of the eigenvectors a, which were 
calculated by the aproximation presented in the last paragraph we make the transforma- 
tion to new coordinates x, 

41 = c a,x, 
I 

such that the linearised equations of motion become uncoupled in the new coordinates. 
ql and p ,  = m,ql are replaced by the corresponding expansions (13) in the exact 
Hamiltonian of the lattice. If the coupling between the non-linear ‘normal modes’ is 
weak we can assume that only one of the x, is non-zero. In this case the Hamiltonian 
H ( x , ,  mixl) is reduced to a Hamiltonian with only one degree of freedom. Therefore 
the relationship between energy and frequency can be found analytically and  so a 
corrected value for the frequency is determined. These new values of the eigenfrequen- 
cies were found in good agreement with the numerical results for both types of 
interaction we examined. 

This is shown in tables 1 and 2 for Morse and Toda lattices respectively. The first 
column of each of these tables shows the eigenfrequencies of the corresponding lattice 
which were calculated by taking into account only the existence of an  impurity in the 
lattice but not of the soliton. The second column shows the corrected eigenfrequencies 
after the influence of the soliton was considered. The third column shows the improved 
eigenfrequencies where also the non-linearity of the potential was introduced into the 
perturbation method. The fourth column shows the numerical values of the eigen- 
frequencies which were found in the power spectrum of the velocity u (  t )  of the impurity. 
Figure 6 shows an example of a spectrum of u ( t )  corresponding to the case shown in 
figure 3 ( b )  and the energy power spectrum of figure 4. The fifth column shows the 
multiples of the frequency corresponding to the time at which the soliton covers the 
length of the lattice. The sixth column shows the differences between the fifth column 
and the closest values of the third column, while the seventh shows the differences 
between the values of the fifth and  the fourth columns. Finally the eighth column 
shows the values of the frequencies found in the spectrum of the energy of the soliton. 
There is a good agreement between the sixth, seventh and eighth column for both the 
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Table 1. A comparison between the eigenfrequencies obtained by the perturbation method 
of $ 3  with the numerical values found in the power spectrum of the velocity of the impurity 
(column 4) for a Morse lattice with E,=3.014, mlmp= 1.11 and N =40. A comparison is 
also made between the theoretically predicted and the numerically calculated frequencies 
found in the spectrum of the soliton energy (columns 6-8). See text for further explanation. 

0.1565 0.1569 
0.1569 0.1627 
0.3120 0.3140 
0.3129 0.3237 
0.4656 0.4692 
0.4669 0.4832 
0.6163 0.6233 
0.6180 0.6378 
0.7633 0.7757 
0.7654 0.7864 
0.9055 0.9207 
0.9080 0.9326 
1.0421 1.0597 
1.0450 1.0724 
1.1724 1.1955 
1.1756 1.2022 
1.2953 1.3216 
1.2989 1.3268 
1.4104 1.4364 
1.4142 1.4455 
1.5167 1.5456 
1.5208 1.5514 
1.6136 1.6451 
1.6180 1.6476 
1.7007 1.7298 
1.7053 1.7372 
1.7772 1.8065 
1.7820 1.8118 
1.8428 1.8713 
1.8478 1.8751 
1.8971 1.9198 
1.9021 1.9293 
1.9398 1.9587 
1.9447 1.9655 
1.9707 1.9862 
1.9754 1.9883 
1.9901 1.9968 
1.9938 2.0872 
1.9990 2.5934 

0.1579 
0.1642 
0.3160 
0.3266 
0.4721 
0.4873 
0.6271 
0.6431 
0.7804 
0.7926 
0.9263 0.928 
0.9397 
1.0662 
1.0804 
1.2030 
1.2106 
1.3299 
1.3358 
1.4456 
1.4554 1.455 
1.5555 
1.5612 
1.6557 1.655 
1.6580 
1.7309 
1.7371 
1.8179 
1.8236 1.823 
1.8834 
1.8874 
1.9317 
1.9420 
1.9725 
1.9803 
2.0018 
2.0110 
2.0122 2.0130 
2.1388 2.1960 
2.6357 2.5620 

0.1830 0.0188 

0.3660 0.0394 

0.5490 0.0617 

0.7320 0.0484 

0.9150 0.0113 0.013 0.014 

1.0980 0.0176 

1.2810 0.0489 

0.0085 
1.4640 0.0086 0.009 

1.6470 0.0087 0.008 

1.8300 0.0064 0.007 0.007 

0.0008 
0.0572 
0.0737 

cases we present here. Similar results were also found for all other combinations of 
the values of the parameters of the system we examined. 

Note that in tables 1 and 2 the lowest eigenfrequency, which corresponds to a 
simple rotation of the particles in the lattice and is equal to zero, has been omitted. 
Note also that the perturbation method, which is presented in this section, does not 
correctly determine the three highest eigenfrequencies of the lattice, because these are 
particularly influenced by the assumption that the soliton is a static deformation of 
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Table 2 .  As table 1 but for a Toda lattice with E, = 4.4, mlmp = 0.6 and N = 40. 

1263 

WO 4, 
0.2219 0.2227 
0.2242 0.2286 
0.4425 0.4436 
0.4469 0.4564 
0.6603 0.6678 
0.6669 0.6752 
0.8740 0.8843 
0.8828 0.8944 
1.0824 1.0909 
1.0932 1.1117 
1.2841 1.2984 
1.2969 1.3137 
1.4778 1.4989 
1.4925 1.5078 
1.6625 1.6809 
1.6789 1.7011 
1.8369 1.8572 
1.8548 1.8782 
2.0000 2.0245 
2.0193 2.0417 
2.1508 2.1752 
2.1711 2.1966 
2.2882 2.3128 
2.3095 2.3360 
2.4116 2.4380 
2.4333 2.4589 
2.5201 2.5455 
2.5418 2.5686 
2.6131 2.6368 
2.6342 2.6597 
2.6900 2.7138 
2.7095 2.7310 
2.7503 2.7697 
2.7672 2.7873 
2.7936 2.8067 
2.8062 2.8196 
2.8197 2.8308 
2.8259 3.0861 
3.0861 3.1827 

Wper W , " ,  

0.2230 
0.2291 0.227 
0.4442 
0.4574 
0.6688 
0.6768 
0.8855 
0.8958 
1.0924 
1.1139 
1.3004 
1.3162 
1.5015 
1.5099 
1.6834 
1.7041 
1.8598 
1.8813 1.881 
2.0272 
2.0440 
2.1758 
2.1998 
2.3160 
2.3399 
2.4350 
2.4633 
2.5485 
2.5723 
2.6407 
2.6639 
2.7177 
2.7351 
2.7740 
2.7917 
2.8109 
2.8251 
2.8365 
3.1154 
3.2028 

" ~ r  I b ~ r - ~ p e r l  I n ~ s - ~ n u m l  Re, 

0.2367 0.0076 0.010 0.010 

0.4734 0.0160 

0.7101 0.0333 

0.9468 0.0510 

1.1835 0.0696 

1.4202 0.0813 

1.6569 0.0265 

1.8936 0.0123 

2.1303 0.0482 

2.3670 0.0271 

2.6037 0.0314 

2.8404 0.0039 
3.0771 0.0383 
3.3138 0.1110 

0.012 0.012 

the lattice. Therefore the resonances of the soliton with these high eigenfrequencies 
which are shown in tables 1 and 2 should not be taken into account. 

This theory not only explains well why the soliton retains most of its energy and 
describes the mechanism which permits the soliton to regain the energy it lost, but can 
also predict for which values of the parameters of the system the decay of the soliton 
occurs. Formula (8) shows that when ( n f w f  - U:) is small the energy of the background 
becomes large and the soliton is destroyed. In other words the decay of the soliton 
takes place when a resonance of the type ( niw, - w i )  = 0 exists. Note that the relationship 
between the appearance of these resonances and the values of the parameters of the 
system cannot be described by a simple rule, as one can also see in the figures of the 
paper by Rolfe and Rice (1980). 
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Unfortunately the above resonant mechanism which is presented in this section 
does not explain the strange metastable behaviour of case ( i i i )  in the introduction. We 
study this case in the next section. 

4. The case of a metastable soliton 

Even though the theory presented in the last section offers a satisfactory explanation 
of the recurrence of the energy of the soliton, it fails to explain why the plateau of 
the energy of the soliton sometimes breaks in a sudden and ‘unpredictable’ way. In 
other words, our analysis cannot distinguish between cases (ii) and (iii). 

One can ask whether the breaking of the energy plateau is a result of the numerical 
accuracy of the computations. As an answer to this we recall that in our calculations 
the total energy of the system was conserved with an accuracy of at least and that 
Rolfe and Rice (1980), who also used similar precautions, found the same behaviour 
in many cases. Therefore, even if the accuracy of the numerical integration of the 
system influences the breaking of the energy plateau, this behaviour can only be 
interpreted as the result of a highly unstable situation. 

How can such an unstable behaviour arise? In the previous section we did not 
consider at all the non-linear coupling between the normal modes of the lattice. This 
assumption is true only if the energy of the background motion is small. In the case 
that the amplitude of the oscillations of the soliton energy is large the energy of the 
background motion can become large during the time periods which correspond to 
the minima of the energy of the soliton. Hence several other normal modes will be 
excited. These normal modes retain their energy because they are not in resonance 
with the soliton, as explained in the last section. This process will make the soliton 
slower. Therefore a new stronger resonance with a normal mode is possible. In this 
case the soliton decays. 

Figures 7 and 8 give a pictorial demonstration of the idea described in the last 
paragraph. Figure 7 shows how the energy of the soliton decays in a case where the 
number of particles is 40, the type of interaction is Morse, the energy of the soliton 
is 3.014 and the mass of the impurity is 1.13. Figure 8 shows the power spectrum of 
the velocity of the impurity taken over a time period of length T = 2500 time units at 
the four different times ( t o ,  t l ,  t Z ,  f 3 )  shown in figure 7. Clearly there is a gradual 
widening of the lines in the power spectrum as the soliton decays. 

This ‘metastability’ is a more general behaviour and is observed in all nearly 
integrable systems. I t  corresponds to trajectories which initiate in the chaotic com- 
ponent of the phase space of the nearly integrable system, but close to its boundary 
with the regular component. Therefore these trajectories behave almost regularly for 
a long but finite period of time before they start to behave in a clearly chaotic way. 

This idea is demonstrated in figure 9. There a PoincarC surface of section for the 
HCnon-Heiles model (HCnon and Heiles 1964) is shown. The energy is taken as 0.155 
and the initial conditions are ql = 0, q2 = 0.6143, p ,  = 0.291 65, p z  = -0.046. This trajec- 
tory produces 67 points near the central regular island (figure 9(a) )  before it leaves 
to fill the whole chaotic component of the phase space (figure 9 ( b ) ) .  

The persistence of regular behaviour near the boundaries between the chaotic and 
the regular regime of a nearly integrable system can also be detected in systems with 
more degrees of freedom than the simple HCnon-Heiles model. In the case we examine, 
namely the one-dimensional Morse or Toda lattice, this can be done by computing 
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Figure 7. Graph of the soliton energy as a function of time for a Morse lattice where 
€,=3.014, N = 4 0 a n d  m,,,=1.13. f , = O ,  f, = l o 4 ,  r ,=2x104,  r ,=4x104,  f ,=6x1O4.  

the divergence between two trajectories close to each other in the phase space. Figure 
10 shows the distance, D( t ) ,  between two trajectories in the phase space of the lattice 
which was presented earlier in this section. One of the trajectories in figures lO(a> 
and 10(b) has initial conditions which correspond to the times t , ,  and t ,  of figure 7 
respectively. The second trajectory initiates at a distance lo-’ from the first. Notice 
that figure 10(a )  which coresponds to a plateau of the energy of the soliton shows a 
clear linear divergence with time between the trajectories (regular behaviour). In 
contrast, figure 10(b), which corresponds to a time period during which the plateau 
breaks, shows an irregular behaviour of the distance between the two trajectories, 
which appears at about the same time with the breaking of the plateau. The perfectly 
linear character of the graph shown in figure lO(a), which does not present any 
fluctuations, is a special characteristic of the Morse lattice with a large number of 
oscillators. 

Therefore the ‘metastability’, which was observed in the numerical results presented 
in 0 2, is a generic behaviour and should be detected in other dynamical systems which 
are small perturbations of integrable systems. Indeed similar behaviour was also 
reported in other dynamical systems (Caponi et a1 1982). In a more general approach, 
the possibility of persistence of the regular behaviour for trajectories initiating in the 
chaotic regime of the phase space of a weakly perturbed integrable system is discussed 
by Benettin et a1 (1984) in relation to Nekhoroshev’s theorem (Nekhoroshev 1977). 

5. Conclusions 

We studied the behaviour of a soliton travelling in a one-dimensional non-linear (Morse 
or Toda) lattice with periodic boundary conditions having one impurity. Our numerical 
studies not only verified the results of Rolfe and Rice (1980) in the Morse lattice, but 
also showed similar behaviour in the Toda lattice. In addition, the behaviour of the 
system was studied when the impurity mass changes, while Rolfe and Rice kept this 
parameter constant. We have also developed an interpretation of these numerical 
results. 

The recurrence of the energy of the soliton, which was observed when the mass of 
the impurity is close to the mass of the other particles in the chain, is explained as the 
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Figure 8. Power spectra of the velocity of the impurity in a Morse lattice where E,  = 3.014, 
N =40 and mlmp = 1.13, taken at I,, t , ,  i2 and t3  of figure 7. 
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Figure 9. Poincare surface of a section of a trajectory of the HCnon-Heiles system, where 
E = 0.155. The initial conditions are q ,  = 0, p ,  = 0.291 65, qz = 0.6143, p z  = -0.046. This 
trajectory produces 67 points near the central island o f  regular motion ( a ) ,  before it fills 
the whole chaotic regime ( b ) .  

result of a mutual exchange of energy between the soliton and some of the linear 
normal modes of the lattice. More specifically, the time period between two successive 
collisions of the soliton with the impurity defines a frequency U,. If this frequency is 
close to the frequencies of some normal modes, these are excited. In 5 3, using a simple 
model, we have shown that the interaction between the soliton and the normal modes 
results to a periodic behaviour of the energy of the soliton. A perturbation method 
was also developed, which predicts these resonances for a given set of parameters E,, 
N and mimP. I f  a resonance is very good, in other words, if a multiple of U ,  is very 
close to an eigenfrequency, the soliton decays. 

Finally, in 0 4 we discussed an intermediate case, where the energy of the soliton 
exhibits a recurrence for a long period of time before it decreases rapidly. We explained 
that this is a result of the non-linear interaction between the normal modes, which was 
not considered in the perturbation scheme of 5 3. This ‘metastable’ behaviour is generic 
in all nearly integrable systems. The persistent regular motion appears when the 
corresponding trajectory initiates in a few special regions of the chaotic part of the 
phase space of the system. Nevertheless, any chaotic trajectory will visit these regions 
because of ergodicity. Therefore any chaotic trajectory of a nearly integrable system 
behaves almost regularly for certain periods of time of a long but finite duration. 
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Figure 10. Divergence of trajectories in the phase space of a Morse lattice where E, = 3.014, 
N = 40 and m l m p  = 1.13. As starting points the states of the system were used at ( a )  1 , .  = IO4 
and ( b )  1, = 2 x lo4 (see figure 7)  respectively. 

Hence, this approximate regularity should be carefully considered when statistical or 
transport properties (i.e. thermal conductivity, diffusion or chemical behaviour) of 
nearly integrable systems are examined. 

Our results illustrate the possibility of coexistence of a coherent (soliton) and an 
incoherent (chaotic) dynamical behaviour in large non-linear Hamiltonian systems, 
namely Morse or Toda chains with one impurity. We expect that this behaviour can 
also be detected in other non-linear systems. 
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